3,229 research outputs found

    Computational studies of droplet motion and deformation in a microfluidic channel with a constriction

    Get PDF
    In the present thesis, we investigate the interfacial dynamics of a three-dimensional droplet in a viscous fluid flowing through a square microfluidic channel with a rectangular cross-sectional constriction. The effects of various parameters of the two fluids and the sizes of the constriction geometry are considered. The numerical computation for the current problem requires a highly-accurate and efficient method owing to the very small/large deformation of the droplet shape at low/high flow rates, the small droplet-solid gap and the complicated three-dimensional geometries. An efficient fully-implicit three-dimensional Spectral Boundary Element method developed by Dimitrakopoulos is employed. Our results show that the droplet dynamics is significantly influenced by the non-symmetric shape of the rectangular cross-sectional constriction, i.e. owing to the constriction shape the droplet deforms much less in the flow-direction by forming a flat disk shape. As the capillary number is decreased, the droplet deformation in the flow-direction decreases owing to the larger surface tension. The effects of the viscosity ratio are complicated with viscosity ratio near unity showing the largest deformation

    DIRECT NUMERICAL SIMULATION OF INCOMPRESSIBLE MULTIPHASE FLOW WITH PHASE CHANGE

    Get PDF
    Phase change problems arise in many practical applications such as air-conditioning and refrigeration, thermal energy storage systems and thermal management of electronic devices. The physical phenomenon in such applications are complex and are often difficult to be studied in detail with the help of only experimental techniques. The efforts to improve computational techniques for analyzing two-phase flow problems with phase change are therefore gaining momentum. The development of numerical methods for multiphase flow has been motivated generally by the need to account more accurately for (a) large topological changes such as phase breakup and merging, (b) sharp representation of the interface and its discontinuous properties and (c) accurate and mass conserving motion of the interface. In addition to these considerations, numerical simulation of multiphase flow with phase change introduces additional challenges related to discontinuities in the velocity and the temperature fields. Moreover, the velocity field is no longer divergence free. For phase change problems, the focus of developmental efforts has thus been on numerically attaining a proper conservation of energy across the interface in addition to the accurate treatment of fluxes of mass and momentum conservation as well as the associated interface advection. Among the initial efforts related to the simulation of bubble growth in film boiling applications the work in \cite{Welch1995} was based on the interface tracking method using a moving unstructured mesh. That study considered moderate interfacial deformations. A similar problem was subsequently studied using moving, boundary fitted grids \cite{Son1997}, again for regimes of relatively small topological changes. A hybrid interface tracking method with a moving interface grid overlapping a static Eulerian grid was developed \cite{Juric1998} for the computation of a range of phase change problems including, three-dimensional film boiling \cite{esmaeeli2004computations}, multimode two-dimensional pool boiling \cite{Esmaeeli2004} and film boiling on horizontal cylinders \cite{Esmaeeli2004a}. The handling of interface merging and pinch off however remains a challenge with methods that explicitly track the interface. As large topological changes are crucial for phase change problems, attention has turned in recent years to front capturing methods utilizing implicit interfaces that are more effective in treating complex interface deformations. The VOF (Volume of Fluid) method was adopted in \cite{Welch2000} to simulate the one-dimensional Stefan problem and the two-dimensional film boiling problem. The approach employed a specific model for mass transfer across the interface involving a mass source term within cells containing the interface. This VOF based approach was further coupled with the level set method in \cite{Son1998}, employing a smeared-out Heaviside function to avoid the numerical instability related to the source term. The coupled level set, volume of fluid method and the diffused interface approach was used for film boiling with water and R134a at the near critical pressure condition \cite{Tomar2005}. The effect of superheat and saturation pressure on the frequency of bubble formation were analyzed with this approach. The work in \cite{Gibou2007} used the ghost fluid and the level set methods for phase change simulations. A similar approach was adopted in \cite{Son2008} to study various boiling problems including three-dimensional film boiling on a horizontal cylinder, nucleate boiling in microcavity \cite{lee2010numerical} and flow boiling in a finned microchannel \cite{lee2012direct}. The work in \cite{tanguy2007level} also used the ghost fluid method and proposed an improved algorithm based on enforcing continuity and divergence-free condition for the extended velocity field. The work in \cite{sato2013sharp} employed a multiphase model based on volume fraction with interface sharpening scheme and derived a phase change model based on local interface area and mass flux. Among the front capturing methods, sharp interface methods have been found to be particularly effective both for implementing sharp jumps and for resolving the interfacial velocity field. However, sharp velocity jumps render the solution susceptible to erroneous oscillations in pressure and also lead to spurious interface velocities. To implement phase change, the work in \cite{Hardt2008} employed point mass source terms derived from a physical basis for the evaporating mass flux. To avoid numerical instability, the authors smeared the mass source by solving a pseudo time-step diffusion equation. This measure however led to mass conservation issues due to non-symmetric integration over the distributed mass source region. The problem of spurious pressure oscillations related to point mass sources was also investigated by \cite{Schlottke2008}. Although their method is based on the VOF, the large pressure peaks associated with sharp mass source was observed to be similar to that for the interface tracking method. Such spurious fluctuation in pressure are essentially undesirable because the effect is globally transmitted in incompressible flow. Hence, the pressure field formation due to phase change need to be implemented with greater accuracy than is reported in current literature. The accuracy of interface advection in the presence of interfacial mass flux (mass flux conservation) has been discussed in \cite{tanguy2007level,tanguy2014benchmarks}. The authors found that the method of extending one phase velocity to entire domain suggested by Nguyen et al. in \cite{nguyen2001boundary} suffers from a lack of mass flux conservation when the density difference is high. To improve the solution, the authors impose a divergence-free condition for the extended velocity field by solving a constant coefficient Poisson equation. The approach has shown good results with enclosed bubble or droplet but is not general for more complex flow and requires additional solution of the linear system of equations. In current thesis, an improved approach that addresses both the numerical oscillation of pressure and the spurious interface velocity field is presented by featuring (i) continuous velocity and density fields within a thin interfacial region and (ii) temporal velocity correction steps to avoid unphysical pressure source term. Also I propose a general (iii) mass flux projection correction for improved mass flux conservation. The pressure and the temperature gradient jump condition are treated sharply. A series of one-dimensional and two-dimensional problems are solved to verify the performance of the new algorithm. Two-dimensional and cylindrical film boiling problems are also demonstrated and show good qualitative agreement with the experimental observations and heat transfer correlations. Finally, a study on Taylor bubble flow with heat transfer and phase change in a small vertical tube in axisymmetric coordinates is carried out using the new multiphase, phase change method

    Fragility Analysis of Space Reinforced Concrete Frame Structures with Structural Irregularity in Plan

    Get PDF
    Because significant damages to structures having structural irregularity in their plans were repeatedly observed during many past earthquakes, there have been great research efforts to evaluate their seismic vulnerability. Although most of the previous studies used simplified structural representations such as one-dimensional or two-dimensional models in the fragility analysis of plan-irregular structures, simple analytical models could not represent true seismic behavior from the complicated nonlinear coupling between lateral and torsional responses as the degree of irregularity increased. For space structures with high irregularity, more realistic representations such as three-dimensional models are needed for proper seismic assessment. However, the use of computationally expensive models is not practically feasible with existing approaches of fragility analysis. Thus, in this study, a different approach is adopted that can produce vulnerability curves efficiently, even with a three-dimensional model. In this approach, an integrated computational framework is established that combines reliability analysis and structural analysis. This enables evaluation of the limit-state faction without constructing its explicit formula, and the failure probability is calculated with the first-order reliability method (FORM) to deal with the computational challenge. Under the integrated framework, this study investigates the seismic vulnerability of space reinforced concrete frame structures with varying plan irregularity. Material uncertainty is considered, and more representative seismic fragility curves are derived with their three-dimensional analytical models. The effectiveness of the adopted approach is discussed, and the significant effect of structural irregularity on seismic vulnerability is highlighted

    Quasi-Eigenstate Evolution in Open Chaotic Billiards

    Full text link
    We experimentally studied evolution of quasi-eigenmodes as classical dynamics undergoing a transition from being regular to chaotic in open quantum billiards. In a deformation-variable microcavity we traced all high-Q cavity modes in a wide range of frequency as the cavity deformation increased. By employing an internal parameter we were able to obtain a mode-dynamics diagram at a given deformation, showing avoided crossings between different mode groups, and could directly observe the coupling strengths induced by ray chaos among encountering modes. We also show that the observed mode-dynamics diagrams reflect the underlying classical ray dynamics in the phase space.Comment: 4 pages, 4 figure
    corecore